MODEL QUESTION PAPER

MATHEMATICS – Paper II A (Algebra, Probability)

Time: 3 Hours Max Marks: 75

Section - A

I. Very Short Answer Questions
Attempt all Questions. Each Question carries 2 marks.

 $10 \times 2 = 20 \text{ Marks}$

- 1. If α and β are the roots of the equation $2x^2 + 3y^2 + 6 = 0$ find the quadratic equation whose roots are α^3 and β^3 .
- 2. If the roots of the equation $x^3 3x^2 6x + 8 = 0$ are in A.P. find them.

3. If
$$A = \begin{pmatrix} 2 & 4 \\ & & \\ -1 & k \end{pmatrix}$$
 and $A^2 = \begin{pmatrix} 0 & 0 \\ & & \\ 0 & 0 \end{pmatrix}$ find the value of k .

- 4. Find the value of the determinant of $\begin{pmatrix} 1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w \end{pmatrix}$ where $w^3 = 1$.
- 5. If ${}^{n}P_{4} = 1680$ find 'n'.
- 6. If ${}^{21}C_{2r+1} = {}^{21}C_{r-4}$ find 'r'.

7. Find the term independent of '
$$x$$
' in

$$\left(x^5 - \frac{1}{x^3}\right)^8$$

- 8. If a card is drawn at random from a pack of cards, what is the probability that it is an ace or a diamond.
- 9. Find the sum of the infinite series

10. In a Binominal distribution if the sum of the mean and the variance is 1.8 find the distribution when n = 5.

Section - B

II. Short Answer Questions

Attempt any five questions. Each question carries 4 marks

$$5 \times 4 = 20 \text{ Marks}$$

11. If x is real show that the values of the expression $x^2 - 34x - 71$ do not lie between 5 and 9.

$$x^2 + 2x - 7$$

12. For $1 < r \le n$ prove, with usual notation, that

$${}^{n}C_{r-1} + {}^{n}C_{r} = {}^{(n+1)}C_{r-1}$$
 find 'r'.

13. Prove that
$$C_0C_r + C_1C_{r+1} + C_2C_{r+2} + \dots + C_{n-r}C_n = \frac{(2n)!}{(n-r)!(n+r)!}$$

14. Find the partial fractions of

$$(2x-1)(x+2)(x-3)$$

15. Sum the series $log_3e - log_9e + log_{27}e - log_{81}e + \dots$

16. If
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 then show that $A2 - 4A - 5I = O$.

17. If two numbers are selected randomly from 20 consecutive natural numbers find the probability that the sum of the two numbers is (i) an even number (ii) an odd number.

Section - C

II. Long Answer Questions

$$5 \times 7 = 35 \text{ Marks}$$

Attempt any five questions. Each question carries 7 marks

- 18. Solve $x^3 18x 35 = 0$ by using Cardan's method.
- 19. Find the number of ways of selecting 11 members for a cricket team from 7 batsmen, 5 bowlers and 3 wicket keepers having atleast 3 bowlers and 2 wicket keepers.
- 20. Find the sum of the series + $\frac{1.3}{+}$ $\frac{1.3.5}{+}$ $\frac{1.3.5.7}{-}$ $\frac{1.3.5.7}{-}$ $\frac{1.3.5.7}{-}$

21. Solve by Gauss-Jordan method, the system of equations :

$$x + y + z = 6$$

$$2x + 3y - z = 3$$

$$3x + 5y + 2z = 19$$

22. Show that

$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^{3}$$

- 23. State and prove Bayes' Theorem.
- 24. If X is a random variable with the probability distribution

$$P(X = k) = \frac{(k+1)C}{2^k}$$
 (k = 0,1,2,....) then find C and also the

mean of X.